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HOMOGENEOUS EINSTEIN SPACES
OF DIMENSION FOUR

GARY R. JENSEN

Introduction

Given a manifold M with a Riemannian metric g;;, Riemannian curvature
tensor R,;;,, and Ricci tensor R;; = > Ry, then M is defined to be an
k

Einstein space if R,, = Ag;; for some scalar function 2 on M. In fact,
A= R/n, where R = Y R, is the scalar curvature of M and n = dim M. It

is a classical theorem that, for n > 3, 1 is a constant if M is connected. A
general problem of Riemannian geometry is the determination of all Einstein
spaces.

It is also of interest to consider pseudo-Riemannian metrics g,;,. Indeed,
in the case of dim M = 4 and for a Lorentzian metric, (signature + + + —
say), the equations R;, = 2g;; are specializations of Einstein field equations
of General Relativity: R,; —  g;; = T;;, where T, is some tensor field with
variously specified properties.

From the physicist’s point of view M is often not specified. Indeed M is
often, on first consideration, taken to be an open subset of Euclidean space
and the Einstein equations are solved locally. However, our point of view
differs from theirs in that we desire to know whether a given manifold can be
an Einstein space. This question has interest only for dim M > 4, since all
two dimensional Riemannian manifolds are Einstein spaces, and any three-
dimensional Einstein space necessarily has constant curvature.

A fairly comprehensive list of known Einstein spaces is given by M. Berger
[1, pp. 41, 42] and J. A. Wolf [9].

A natural starting point for the determination of Einstein spaces is with
four-dimensional homogeneous Riemannian spaces. It is the purpose of this
paper to determine all such spaces which are Einstein spaces. A homogeneous
space M can be represented as a quotient G/H, where G is a transitive group
of isometries on M and H is the isotropy group at some point p,e M. In
Chapter II it will be seen that when G is large enough, for example when
dim A >1, then the solution of the problem is fairly easy. However, when G
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is small, for example when G acts simply transitively on M, the problem seems
to be much more difficult. For this reason we were led into some general
investigations of group manifolds, that is, a manifold with a group of isometries
acting simply transitively on it. The results of this investigation are contained
in Chapter I. Chapter II deals with the situation when G is large enough, as
mentioned above, and finally Chapter III contains the determination of all
four-dimensional group manifolds which are Einstein spaces.

All four-dimensional, simply connected, homogenous Einstein spaces were
found and they are listed in the following table. All of these spaces are
Riemannian symmetric spaces. An interesting problem therefore arises as to
whether a direct proof of this fact can be found. However, in higher dimen-
sions a homogenous Einstein space is not necessarily symmetric. Indeed, there
exist bounded homogeneous, but non-symmetric, complex domains of complex
dimensions four and five [7]. Bounded homogeneous complex domains with
the Bergmann metric are Einstein spaces (cf. [2, p. 300]). J. A. Wolf [9] has
recently classified all non-symmetric isotropy irreducible homogeneous Rieman-
nian spaces, which are Einsteinian, and his list contains a space of dimension 7.

Four-dimensional, simply connected, homogeneous Einstein spaces

S = Ricci tensor field, g = metric tensor field on M, $ = 2g, 1< R.

A M
2> 0{C(+,4), P2, C), C(+, 2) xC(+, 2) (equal curvature on each factor),
A=0]|C(,4),
A< 0{C(—,4),H2,0),C(—, 2y xC(—, 2) (equal curvature on each factor),

+ +
where C( 0, n): space of constant ( 0) curvature and dimension n, P(2, C)

= complex projective space of two complex dimensions, H(2, C) = hermitian
hyperbolic space of two complex dimensions.

The last four spaces listed in the table are realizable as group manifolds.
Matrix representations of all the distinct Lie algebras g giving rise to them are
listed below. They are all solvable. g and the metric on g are defined by taking

X,, -+, X, to be an orthonormal basis over the reals.
0 0 0 O 1
c oy 0 01 0 O 0
& Xi=lg_ 100 %= 0 |
0 0 0O 0 0 00
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- o .
O 1 O |o
X, = o b X, = "
(0 000 000J0
0 0 0 0 O g -1 1
0O 0t 00 O 0 0
C('—’4)X1:0—1000, X2: 00,
0 00 01 rool g
(0 00 10 (1 00
g 00 - 0 0
O -1 1 O 00
X3: 00,X4: ._..11’
010 0 0 1
_0100 0 0 O

where 0 < ¢ < . Distinct ¢ give non-isomorphic groups.

_i2 o o 0 1 -1
3 , X,=|—1 0 o0,
H2,0): X,=| 0 _’3‘_ 1 =100
o 1 X
3
‘ 0 i —i 0 0 O
X3={z’ 0 o}, X4={0 i—il,
i 0 0 0 i —il

where 0 < ¢ < oo. Distinct ¢ give non-isomorphic groups.

10 1 0 1 T

C(—,2)xC(—,2): X, =10 O O , X,=100 O X
L O 1O L O 1O

rTO| O rOl O
X3: 1 0} X:,: 0o 1!-
_O 0 0] _O.O 0]

Chapter 1

Throughout this chapter G will denote a connected Lie group and g will
denote its Lie algebra. We regard g as the tangent space at e of G, but as a
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Lie algebra, g is identified with the Lie algebra of all left-invariant vector
fields on G. On G we consider a left-invariant Riemannian metric, which is
determined uniquely by a positive definite inner product ¢, > on g. Namely,
let ge G, and X, Y e T, (G), and define <X, Y), = {I,_.X, [,...Y), where
I, (or r,) denotes left (right) multiplication by g in G. The curvature tensor
R of a left-invariant metric is itself a left-invariant tensor field on G, and is
therefore uniquely determined by its values on g. Thus we regard the curvature
tensor R as a quardrilinear form on g.

The objectives of this chapter are to determine a formula for the curvature
tensor in terms of the inner product and Lie bracket on g, to apply this formula
in such a way as to classify G according to the nature of its Ricci tensor, and
finally to determine what conditions a four-dimensional G must satisfy in order
to be an Einstein space.

Before deriving a formula for R, it is necessary to establish some notation
and conventions. The Riemannian connection on G is defined by the formula

2P RY,Z> = XY, Z> + YLX, Z) — Z(X, Y
+ X, Y, Z) +<(Z,X],Y) +<{X,[Z, Y],

where X, Y, Z are any vector fields on G (cf. [4]). Define the operator Ly by
Ly(Y)=I[X,Y], andlet A, = F — Ly. Itis well known that A is a (1, 1)
tensor field on G, which is skew-symmetric with respect to the metric if and
only if X is a killing vector field. Also it is known that A,Z = —F ,X for
any vector field Z on G. (Cf. [4, pp. 235, 237]).

Let Aecg, X and Y be, respectively, the left-invariant and right-invariant
vector fields generated by A4, and a, — exp t4, te R. Then the 1-parameter
groups of diffeomorphisms generated by X and Y are {r,} and {l,}, respect-
ively. Thus Y is a killing vector field, since I,, is an isometry of G for each ¢.
Finally, observe that if Z is any right-invariant vector field on G then [Z, X]
= 0. In fact, for ge G,

(Z, X), = lim L {r,.Z), — Z,} = lim %{rf,l.z

t—0 t—0

(1.1

- Zﬂ}

ga—y

= lim L {ropryeZ, — Z,) = lim % (Z,—Z)=0.
-0

t—0 [

Theorem 1. Let A and B be orthogonal unit vectors in g, and A,, ---, A,
an orthonormal basis of g with A, = A, A, = B. Then

R(A, B, A, B) = —([A, [4, B]], B)

1.2) — <[4, Bl,[4, B]> — g (A,[A4, A,]1><{B, B, A,]>

+ 5 Z A B AD + (B 14, A + <A, [4, BDY
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Proof. Let X = X,, -- -, X, be the left-invariant vector fields generated by
Ay, -+, A,, respectively, and Y the right-invariant vector field generated by
B. A well-known formula for R is

RX,Y,X,Y)= . W,Y — V.Y, X5,

since [X, Y] = 0. But now Y is a Killing field and /. X — V.Y =[Y, X]= 0.
Thus

VY, X>= -V, Y, VX)+YF.Y,X)=—-F,Y,V,Y),
since
FY, X>=—AX,X>=4X,4,X)=~(X,V,Y).
This gives the following formula for R:
(1.3) RX, Y, X, )= Y, X>+V,Y, VY.

In the following, g will denote a point in G, and e the identity element of
G. The first step is to determine the vector V.Y in terms of the orthonormal
frame field X,, - - -, X,. Making use of (I.1) we have

FY, X = %{X(Y, XS — XY, X> + (Y, [X, XD + Y{X, X>

+ (X, [X;, Y + <X, [X, YT}
- % (XY, X)) — XY, XD + <Y, [X,, XD},

since (X;, X> is a constant on G and [X;,Y]=0,i=1,.--,n Let
ai = exptA,teR,i=1, ..., n. Then
" [ d - \
XY, X )(g) = Xad(g™)B, A,> = \7 ad(a_,)ad(g")B, Ai/
=0

= <[A7 ad(g_l)BL Az> -

Thus X(Y, X,>(e) =— ([A, B], 4.
Likewise, X (Y, X>(e) = — ([A,, B], A>. So

L4) <P, X e) = %{— (IA, B], 4> + (A, B, 4> + (B, [A4;, A]>},

F.Y,V.Y)e)

1.5
= 2 (A8, AD + (B4, AD + (4, 14, BDY .



314 GARY R. JENSEN

We next determine VY in terms of X,, -+, X,. By(I.1) and [X,, Y] = O,
we have V.Y, X > =Y, X)) — : XY, Y). But

YCY, X(g) = Y<ad(g™)B, A;> = <_jt. ad(g-"ad(a* )B, Ai>

= (—ad(g)[B,B],4;) =0,

XY, Y)(g) = % ad(a’ )ad(g™")B, ad(a )ad(g™")B)

t=0

= — 2{A,;, ad(g"")B], ad(g™") B) .

Thus 7,Y = 3. ([4,, ad(g")B], ad(g™)B>X, .
i=1

Finally, we compute V,F,Y from this expression. Since

V.r,y
= Z {X<[A,, ad(g~")B], ad(g")B>X; + {[A4,, ad(g"")B], ad(g"")B> V X},

we have

Krr,Y, X>
= X<[A, ad(g~")B], ad(g")B) + z {[A;, ad(g™")B], ad(g™")B)> ¥V X, X> .

Now

X{[A, ad(g=")B], ad(g~")B)(e)

_ _% (1A, ad(a_)ad(g~")B], ad(a_,)ad(g B> (e)

t=0

= - <[A’ [A, B]], B> - <[A, B], [A, B]> ’
and (V. X;, X>(e) = ([A4, A,], A, from (1.1). Putting these together we obtain

<Vng/Ys X>(e) = — <[Aa [As B]], B> - <[A, B], [As B]>

(1.6)
— <4, [4, 41> (B, (B, A]>.

The formula for R(A, B, A, B) now follows immediately from (1.3), (1.5)
and (1.6).

As an immediate application of the above formula for R we have

Theorem 2. Denote the Ricci tensor of G by § and regard S as a sym-
metric bilinear form on q. If X e q is a central element, i.e., [X, Y] = O for
every Yeg, then S(X, X) > 0, and S(X, X) = 0 if and only if {X,q"> = 0,
where o' = lg, gl is the derived algebra of g.
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Proof. Let X,, - - -, X, be an orthonormal basis of g with X, = X. Then
S(X, X) = i} R(X, X,;, X, X,). Now use formula (I.2) and the assumption
i=1
that [X, Y] = O for every Y e g to get

1

R(X’ Xi’ X’ Xz) = Z Z <X’ [Xj’ Xi]>2‘
J

Hence S(X, X) = % 37 (X, [X;, X;1)*. The conclusion is now obvious if one
i3]

observes that the vectors {[X;, X,]}; ; span ¢'.

Theorem 3. Let 3(q) denote the center of g.

) If3@) #0and S = 2{, ), then 2 = 0 and 3(g) | ¢’

2) If S is positive definite, then G is compact semisimple.

3) - If S is negative definite, then 3(g) = 0.

Remark. In Chapter III it will be seen that, if dimg = 4 and § = 0, then
#(g) # 0. The author does not know whether the converse of 1) is true for
higher dimensions.

Proof. Suppose 3(g) # 0 and S = 2 {, >. Then Theorem 2 implies that
2> 0,with2 = Oifandonly if 3(g) | g'. If 2 > O, then S is positive definite,
and thus Myers’ theorem says that G and every covering manifold of G is
compact. In particular the simply connected covering group G of G is compact.
Thus g is a compact semisimple Lie algebra. (cf. [2, p. 122]). This proves 1)
and 2).

If S is negative definite then Theorem 2 implies that 3(q) = 0.

The following corollary will be needed in the proof of Theorem 5.

Corollary 1. Suppose dim G = 4 and 3(q) # 0. If G is an Einstein space,
then it must be locally flat.

Proof. Since 3(g) # 0 we have § = 0 by Theorem 3. It suffices to prove
this corollary for simply connected G.

Let G = G, X G, X --- x G, be the de Rham decomposition of G, where
G, is Euclidean and G,, -- -, G, are the irreducible non-Euclidean factors.
Then G,, - - -, G, are subgroups of G, although the product is only that of
Riemannian spaces. (cf. [6, p. 51]).

Claim. dim G, > 1. In fact, let B e 3(g) be a unit vector, and Y the left-
invariant vector field on G generated by B. Then Y is also right-invariant,
since B is central. Let X be any left-invariant vector field on G, and X,
-+, X, a left-invariant orthonormal frame field on G with X =X, X,=7.
Then from Formula (I.4), we have {F.Y, X, >(e) = (B, [X,(e), X(e)]> = 0,
since 3(g) | ¢’ by Theorem 3. Hence Y is a parallel vector field and con-
sequently Y(e) e T,(G,), i.e., dim G, > 1.

Thus dim G; < 3, i = 1, .- -, k; and consequently G, is flat since its Ricci
tensor is zero. Hence G = G,.
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Remark. In Chapter III it will be shown that a four-dimensional G with
zero Ricci tensor must have 3(g) # 0. Thus the above corollary can be easily
extended to five-dimensional G.

Following the lead of J. A. Wolf we can sharpen the results of his theorem
in [8]. v

Theorem 4. Suppose G is nilpotent and non-abelian. Then there exist unit
vectors X eq and Y e g such that S(X, X) > 0 and S(Y, Y) < 0.

Proof. Let g=D'gDD'gD --- DD¥'g D D¥ =0 be the central
series of g, where Dig = [g, D*"'g]. g being non-abelian implies that & > 2,
D¥~'g # 0. Now 0 = D*(g) = [g, D*'g] means that D*~'g C 3(g). Thus there
exists a unit vector X ¢ 3(g) N ¢’. By Theorem 2 we have that S(X, X) > 0.

For each i =1, ---, k let at C Di"'g be the orthogonal complement of
Dig in D*"*g. Thus D*~'g = a* 4+ D?g, orthonogonal vector space direct sum.

Now g=a'+ a*+ --. + a¥, orthogonal direct sum as vector spaces.
Since g is non-abelian there is a smallest integer ¢, 1 < ¢ < &, such that «
contains a non-central unit vector, ¥ say. Let a = }, a‘. Then q is central,

1<i<t
and g = a + a' + D'g. Choose an orthonormal basis X, ---, X, of g so
that the first dim a' vectors are in a', the second dim a® vectors are in a?, etc.
Then there are integers ¢ < p such that X, ..., X ea, X,,,, -+, X, ed,
and X, ., ---, X, ¢ D'g. We may assume that X, = Y.

() Observe that if i < j then X, | [X, X,] for any X eqg.
Claim. S(Y,Y) < 0.
For 1<i<agqg:

R(X,, Y, X;, Y) = Oby (1.2), () and the fact that X, is central for | <i<gq.
For g+ 1<i<p:

RX,Y,X,Y) =— %H[Xi, Y)i* by (1.2), (+) and that (X, [Y, X,]> = 0

forl1 <j<n.
For p+1<i<an:

1

RX,Y,X,;,Y) =— |IlX,, Y] + 7 2 KXY, XD + <X, [X, YD)

1<5<n

= — X0 YIF 4+ T <K Y. XD

g+1<j<i

+:1( <X, X, YT

i<jLn

by (I.4) and repeated applications of (x). Thus
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SY,Y)
= Z R(Xia Y} Xi’ Y)
1<i<n
—_ 3 y xuYIp— X X, YIP
4 q+i<i<p p+i<i<n
+ oy s xLmx L n T (XX, YT
4 p+i<icn g+1<i<i 4 pricisn idj=n
—_3 oy X, YIp— % X, Y]
4 q+1<i<p p+i<i<n
+ 1 T O XL X E LY T (X, Y, XD
4 q+1<i<p p+i<i<n 4 p+i<i<n j<izn
+ 1 (X, X, YD by ()
4 pii<i<n 1<j<n
—_ 3 » IXLYIF— T X, YIP
4 ga1<i<p prigisn
TR D RS 5 0 ¢ ) RN SR }APO 'Ol b 9B ¢}
4 q+1<i<p 147 4 p+ri<jgnicicn
+ 1 s ix, vIp, by
4 p+i<isa -
3 ‘ 1 ) o
=—— Y X, Y|P+ — X X, YI}
4 q+1<i<n 4 q¢+igji<p
+ 1 s rmxir=-1 5 . vig<o,
4 pri<j<a 2 q+i<isn

since Y is non-central, and so [X;, Y] = O for some i.

Corollary 2. A nilpotent G can be an Einstein space if and only if it is
abelian.

Theorem 5. Suppose that G is non-abelian, four-dimensional and Einstein-
ian. Then G must be solvable, but non-nilpotent.

Proof. G cannot be nilpotent by Corollary 2.

Let r be the largest solvable ideal of g. Then g/r is semi-simple and there-
fore must have dimension three or zero, because there are no two or four-
dimensiona) semi-simple Lie algebras. Thus dim r is one or four, i.e., either
dim r = 1 or G is soivable, ‘

Suppose dim r = 1. We shall prove that in this case G cannot be an Einstein
space. g is the semi-direct sum r 4+ &, where & is a three-dimensional simple
subalgebra of g. Explicitly, there is a Lie algebra homomorphism 7: & —
End (), given by 5(X) (Y) = [X, Y] for X e/, and Y e r. Then dim Ker 5
> 2. Since % has no non-trivial ideals, Ker » = &, i.e., 5 is trivial. This just
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means that g is the direct sum r @ %, and & is an ideal of g. But then it is
clear that r = 4(g) and, consequently, 3(g) # 0. Hence G must be locally flat
by Corollary 1.

Since r = #(g), the invariant vector fields on G generated by elements of r
are parallel, as was seen in the proof of Corollary 1. Thus r is invariant under
the linear holonomy representation on g. But then so is &, since ¥ | r by
Theorem 3. Hence it follows that the simply connected covering group G of
G is a direct product—as groups and as Riemannian spaces—G = R X S,
where § is the analytic subgroup of G corresponding to . Now G being simply
connected and flat implies that S is simply connected and flat also. But this is
impossible since a semi-simple connected Lie group cannot act transitively on
R® as a group of Euclidean motions. (cf. [5, Chapter X]).

Theorem 4 reduces the problem of finding all four-dimensional G with a
left-invariant Einstein metric to the case where G is solvable but non-nilpotent.
It will be seen in Chapter III that G must have a discrete center in order to
be an Einstein space. This result is indeed stronger than Theorem 4 since therc
are four-dimensional solvable non-nilpotent Lie groups with non-discrete

center. For example
1 a b >0
c
G:[(O C d) a,b,c,deR]'

0 0 1

Chapter 11

Throughout this chapter M denotes a simply connected, homogeneous,
Riemannian manifold and G is a connected group of isometries acting trans-
itively and effectively on M. Our problem is to determine all such four-
dimensional M which are Einstein spaces. S. Ishihara [3] used a general
method of E. Cartan’s in order to determine the topological structure of four-
dimensional M. Ishihara’s methods solve most of our problem except for the
case when G acts simply transitively on M, that is, the case when M is a
group manifold with a left-invariant metric.

This chapter is divided into three sections. §1 contains a determination of
the subalgebras of so(4), §2 is a summary of Cartan’s method as applied by
Ishihara, and §3 contains the application of these and some other methods to
our_problem. ' .

1. Fix a point p,e M, and let H be the isotropy subgroup of G at p,, an
SO(M) be the principal bundle of oriented orthonormal frames on M with
structure group SO(n), n = dim M. Fix a frame u,e SO(M) over p,e M.
Define F: G — SO(M) by F(q) = q,U4,, and the homomorphism f: H — SO(n)
by F(h) = uf(h) for he H. F defines a bundle map of G(G/H, H) into
SOM)(M, SO(n)):
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G L, som)
H l lz SO(r)
G/H—T M

Consider the map f,: b — so(n), where §) is the Lie algebra of H. An
evident way to divide this investigation of M into more tenable pieces is to
determine all the subalgebras of so(n) and then to consider separately each
case as f,(b) ranges over this collection of subalgebras. For this reason we
determine the subalgebras of so(4).

Let 6 be the canonical 1-form on SO4), 6 = (4,,), 6;; + 6, = 0, 0 < i,
i < 3. The Maurer-Cartan equations for SO(4) are then

dﬁij = Z 0ik /\ 0kj .
k

Define the following forms:

= Oy — O, P2 = Oy — Oy, O3 = O — 015 5
¢'1 = —0y — 02, ¢'2 = —fy — Oy, ¢'3 = —fy — 0, .

Without difficulty one can obtain the following proposition.

Proposition. Let Y) be a subalgebra of the Lie algebra so(4). Then under
an adjoint transformation induced on so(4) by an element of 0(4), §) is
equivalent to one of the subalgebras defined by the following equations:

I. b= so(4).

II. ¢ =¢,=0.

III. ¢, —¢,=0,¢0, — ¢, =0, ¢, — ¢, = 0.
IV. ¢, =¢,=¢,=0.

V. ¢go=¢,=¢, =¢;= 0.

VL ‘P2:§03:¢z=¢’3:0’m‘P1=¢'1(m>0)-

VII. ¢o=¢,=¢,=¢,=¢;=0.

VIII. §=0.

2. Let o denote the Riemannian connection form on SO(M), and 6 the
canonical 1-form on SO(M). Note that § no longer denotes the canonical form
on SO(n) as it did in §1, but all other notation in this section is the same as
that in §1. Write w = (0}), 0%+ =0, and 6= (), 0 < i,j, .-, <n—1.
Then the structure equations are.

4 = — 5 i A 6%,
dob = — 3 i N\ ot + 2%,

where % is the curvature form.
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G(G/H,H) is a subbundle of SOM)(M, SO(n)), but the Riemannian
connection cannot, in general, be reduced to G. Recall that F(e) = u,, and
thus F,q = T, (F(G)). The vertical subspace of F,q is F,}, which means that
h={Xeg|F*§,,(X) = 0} and F*w restricted to {) is the identity homomorphism.

f4«b is a subalgebra of so(n), and thus, is defined by a set {4,} of linear
functionals on so(n), i.e., f,h) = {Xeso(n)|A,(X) =0, for all a}. Write
A, = (Ag;), Agi; + Aqy; = 0. For each a, the linear 1-form 3 A4, ,F*w

i<

vanishes on §, i.e., it is a horizontal form, and therefore

> A F*el = 3 ¢, F*04, for certain constants ¢, ,
i< 3
since the #¢ span the space of all horizontal forms.

We can obtain relations on the c¢,; by differentiating these equations and
evaluating each side on pairs of the form (X, Y), where X e ), Y eq. Let F X
= () xe; + e = 0, and 3 y;;4,;; = 0, for all a. Then

i<J

Frdo(X,Y) = — 3 o} A 0i(F, X, F,Y) + QUF,X,F,Y)
k

- % T ot(F, X00i(F,Y) — o}(F,X)ol(F,Y)

- _%; (s + 22,00(FY)

F*dg(X,Y) = — 3 ol N 05(F, X, F,Y) = —% S Wi(F X)0%(F,Y)
- k

&

s
2 %

1l

We have used the fact that F X is vertical while £ and ¢ are horizontal.
Hence we get the following relations on the c,;:

ar.n F* 3 Ao + g0l = F* 2, Caitisd® s
i< e
k

where
Xie + e =0, ;:L At = 0

for each a.

3. 1In this section we determine all four-dimensional simply connected
homogeneous Riemannian Einstein spaces M = G/H, except for the case when
M is a group manifold. This remaining case will be dealt with in Chapter I11.
We consider eight cases, each case being numbered according to which type—1
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through VIII of the proposition in § I—f, b belongs. In some of the cases the
results are easily extended to higher dimensional M. In such cases the results
are stated and proved in as much generality as possible. Case II is done in
additional detail in order to illustrate the general method, which is essentially
the same in each case, except for Case IV, which requires a few different
methods.

For convenience we let C(+,n), C—,n) and C(0, n) denote the simply
connected Riemannian spaces of » dimensions with constant positive, negative
and zero curvature, respectively.

Case 1. {5 = so(4). In general, if dim M = n, and f,) = so(n), then M
is one of C(+,n), C(—, rn) or C(O, n).

Case 11. {4 is defined by the equations ¢, = ¢, = 0. Thus

0 a b ¢
—a 0 c d

i,5 = b e 0 a a,b,c,de R(= u(2) .
—C —d —d 0

In general, suppose that dim M = n = 2m, and {,Y is the standard imbedding
of u(m) in so(n) given by

um)sh = h, + ih, & [h‘ _hQ] e so(n) ,
. h, h

where 4, and £, are real m x m matrices.

We shall determine what M must be in this general case. To do this, we
make use of the equations (II.1) in § 2, and shall omit the F* in these equations,
so in the following it is to be understood that @ and @ are restricted to the
subbundle G(G/H, H). Now there are m(m — 1) linear equations defining
f+H, namely,

(112) Xie = Xism,j+m s
(113) Xi,j+7n = Xi,i-»—m s
where 1 < i,j, k, --- < m, (in the following we make the convention that

1<i,j, k, -+ <m), and where y = (y,,), 1 < a, b < n, denotes any element
in so(n). Thus, for each fixed pair i, j, with 1 <i < j< m, we get the
equation, from (II.2) and (II1.1),

éj{Xu(wg - w’;IZ) + xi,k+m(w§+m + w§+nz)}
(114) + k§i {ij((‘)lic - wfr;’;) + Xk+m,i(wf+m + w§+m)}

—_ L k 3
— }EL Xkl(ck0 _ Clﬁ _ Ck+m0Hm - Cl+m0k+m)

+ ké Xk,l+m(ckel+m - Cl+'m.0k + Clﬁk+m - Cl+mﬁl) >
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and the equation, from (II.3) and (IL.1),
Z {Xik(wl;+m + w?j—m) + Xi,k+m(w§12 - (l)?)}
k+j

(115) + k§i {ij(wz":+m Jf' w:_c+m) + Xk,j+'m((’)1l.'c - (l)f:::)}

= Z Xkl(dkel - dle’c + dk+mel+m - dl+m0k+m)
k<l
+ Z Xk,l+m(dk0”m - dl+m0k + d10k+m - d;;+m0l) .
ksi

In (II.4) and (I1.5) the variables y,, which appear are all independent, that is,
these equations are identities which must hold for any choice of the y,, which
appear. Hence the coefficients of the x,, on each side of the equation must be
the same. Equating the coefficients of y;; in (I.4) we get that 0 = c,§/ — ¢,6°
+ Ciamfi*™ — ¢y 8™ Thus ¢, = ¢; = ¢ = ¢;,,, = 0, since the §* are
linearly independent. Equating the coefficients of y; ;, , in (II.4) we then get

(I1.6) o™ + o, =0.
Similarly, we get, from (II.5),
(1.7 otm — @t =10,

Equations (II.6) and (I1.7) hold for any i, j satisfying 1 < i < j < m. Thus
these equations imply that the connection form @, when restricted to
G(G/H, H), takes values in f 5. This means that thc connection can be
restricted to G(G/H, H).

Define
nt = gt + gt
i =f +iof™, 1 <0, j<m,
¢ = Q% + i0™, on G(G/H,H) .
Then
drt = — X7y Nrd,
7
dr’ = —Zk)ﬂ;'/\ﬂ‘}-F(D?,
= —xni, 0\ = — @i .
Thus #!, - .., z™ define a Hermitian structure on M, which is torsion free, so

that M is a Kidhlerian space. Now H = U(m) acts transitively on the unit
sphere in T, (M). Hence M has constant holomorphic curvature, that is, M is
either P(m, C) = complex projective space, or H(m, C) = hermitian hyperbolic
space, or C(0, n).
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Case II1.  f,Y is defined by the equations yo, = yo, = ¥ = O.

0 0 0 0

0 0 a b ]
0 —a 0 c
0 —b —c 0

f+ = a,b,ceR[; so(3) .

In general, suppose dim M = n, and f,§ = so(n — 1), which is contained in
so(n) as

0O 0.-.-0
v
- so(n — 1)
0
Then the linear equations defining f,§ are y,; = —y,, =0,j=1,..-,n, and

as a consequence of equations (II.1) we get the following equations, when the
o’ and ¢* are restricted to G:

@) = ¢/, where ¢ = constant, 1 < j< n.

Notice then that df' = — 3 0} AN 09 = — 3¢/ A9/ = 0. 1f ¢ = O then it
' 7

J
is not difficult to see that M is R' x C(+,n — 1) or C(0, n). If ¢ #+ 0, then
K. Yano [10] shows that M is C(—, n).
Case IV. £, b is defined by the equations

Yoo — Yoz = Xoo — Xot = Yoz — X2 = 0,

0 a b c

B —a 0 c —b
fb = —b —c 0 a
—c b —a 0

a,b,ceR}= su(2) .

In general, suppose dim M = n = 2m, and f,0) = su(m) which is contained
in so(n) by the standard imbedding described in Case 11 for u(m).

Proposition. If m + 3, m > 2, then M is a Kahlerian space with constant
holomorphic curvature equal 1o zero, that is, M = C(0, n).

Remark. J. A. Wolf has shown the author that in the case m = 3, M must
be either C(0, 6) or G(2)/SU(3).

Proof. The linear equations defining f,} in so(n) are:

Xij = Xi+7n,j+7n >

(11.8)

Xiyjem = Xjyivm >

3

Xiesm = 0, where 1< i, j<m.
1

&
Il
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Thus from (II.1) and these equations (IL.8) we obtain m(m — 1) + 1 equations
relating wj and 67 restricted to G(G/H,H), 1 < «, §,y < n. When m =2
these three equations all reduce to identities 0 = 0. When m = 3 these seven
equations give no information. But when m > 4 we get

- t+m
(Dj = wj+7n 3

W =@l for 1< j<m.

Thus, when restricted to G(G/H, H), o takes values in u(m) C so(n). If we
let 77 = @7 4 "™, 1 < j< m, then 7!, --., z™ define a hermitian inner
product on M, and G(G/H, H) C U(M), where U(M) is the bundle of unitary
frames on M.

Claim. When restricted to UM), o takes values in u(m) C so(n).

Proof. LetueG(G/H,H)cUM), and X ¢ T (UM)). Then X = X, + X,,
where X, e T,(G) and X, is vertical. Thus o(X) = o(X,) + o(X,) € u(m), since
(X)) € u(m) as shown above, and w(X,) € u(m) C so(n) because X, is a vertical
vector tangent to U(M) and o is a connection form. Now, if u is any point of
U(M), then u = va for some v ¢ G(G/H, H) and some a ¢ U(m) C SO(n), and
any vector X ¢ T,(U(M)) is given by X = R,.Y for some Y ¢ T ,(U(M)), where
R, : UM) — U(M) denotes the right action of U(m) C SO(n) on U(M). Thus,
using the Ad-invariance of w, 0,(X) = 0,R,.Y = Ad(a"Ww,(Y)) € u(m), where
Ad denotes the adjoint representation of U(m) in u(m), and the claim is proved.

The fact that o restricted to U(M) takes values in w(m) C so(n) implies that
the connection can be restricted to U(M). Hence M is a Kédhlerian space. Since
the isotropy group H = SU(m) C SO(n) acts transitively on the unit sphere in
T,,(M), it follows that M has constant holomorphic curvature.

In the case when m = 2, a different argument is needed in order to show
that M is a Kdhlerian space of constant holomorphic curvature. The proof for
m = 2 is valid for any even value of m, say m = 2k.

Alternate proof for the case m = 2k. The linear isotropy representation of
H is SU(m) < SO(n), which implies that there exists an almost complex
structure J, on T, (M) which is invariant under the action of H. J, can be
extended to an almost complex structure J on M using G and the fact that J,
is invariant under H. Then the torsion tensor field N defined by J, i.e. by N(X,Y)
=[X,Y] +JUX,Y] + JIX,JY] — [UX,JY] for vector fields X,Y on M,
must be zero since it is of type (1,2) and invariant under SU(2k), namely,
—1eSUQRL) C SO(4k), where [ is the 4k X 4k unit matrix, and thus

N(X,Y) = (-IN)(X,Y) = —N(—-X, -Y) = —NX,Y),

i.e., N = 0. Hence this almost complex structure on M is integrable.
Now FJ, the covariant differential of J, is a tensor field of type (1, 2) which
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is invariant under SU(2k), and thus, as for N above, FJ = 0. Hence M is a
Kihlerian space.

M has constant holomorphic curvature since H = SU(m) acts transitively
on the unit sphere in T, (M).

We have now established that for m =+ 3, >2, M must be a Kihlerian
space of constant holomorphic curvature. We must now show that M is
actually flat.

Suppose M has positive constant holomorphic curvature. Then I,(M), the
connected component of the full group of isometries on M, is isomorphic to

SU(m + 1)
D
S(U(m) x UQ) ’
D

where D is the (discrete) center of SU(m + 1), and S(U(m) x U(1)) is the

subgroup of U(m) x U(1) consisting of elements with determinant equal to

one. Now H = SU(m) implies that 1 + dim H = dim S(U(m) x U(1)). Thus

G must be a subgroup of SU(m + 1)/D of codimension one. But it can be

easily shown that SU(m + 1)/D has no subgroups of codimension one if m > 2.
Suppose M has negative constant holomorphic curvature. Then

SU(m, 1)
D
S(Um) x U1))
D

I(M) =

where SU(m, 1) is the subgroup of SL(m + 1,C) which leaves invariant the
hermitian form —z,Z, — .-+ — 2,Z, 4+ Zn,1Zm.1, and D is the (discrete)
center of SU(m, 1). Moreover, as above, G must be a subgroup of SU(m, 1)/ D
of codimension one. But, as for SU(m + 1), such subgroups of SU(m, 1)/D
do not exist.

Hence M must be flat.

Case V. f{,} is defined by the equations

Xp=Xy=Xy=X,=0,

0 a 0 0
f=q| ~¢ 8 8- 2 a,beR = 50(2) ® s0(2) .
0 0 —b 0

As a consequence of equations (II.1) we have o) = o = o = w} = 0, i.e.,
the connection can be restricted to G(G/H, H). Hence M = M, X M,, where
M, is a two-dimensional space of constant curvature K;, i = 1, 2.
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Case VI. f.1 is defined by the equations

Xp=Xy=X;=X,=0, Xy = mXy (m>0),

0 a 0 0
—a 0 0 0
= eR = s50(2) .
#4b o 0 0 mall @
0 0 —ma 0

As a consequence of equations (II.1) we have o) = of = o = 0; = 0,
@} = me?, i.e., again the connection can be restricted to G(G/H, H). Thus
Qi = 0, except 2y = do? and 2% = mde}; and do} N §* =0, 0 < i < 3, from
the first Bianchi identity: }; 2/ A 8¢ = 0. Therefore do} = 0, and 2% = 0

for all i and j. Hence M is C(0, 4).
Case VII. f.h is defined by the equations

Yoo = Xos = X2 = Xz = X = 0

0 a 0 O ‘!
fu b = "g g 8 8 acR) = s0(2) .
0O 0 0 O

As a consequence of equations (I1.1) we have

) = af® + b, @) = cf® + ef',
wy = —bf® + ap', @} = el — b,
ol = rg* + 16°,

where a, b, c, e, r, t are constants which must be determined. The first Bianchi
identity gives the following relations on these constants:

2ab +re =0, 2¢cb —rb =0,

2a0e +te =0, 2ce —th =0,
ar +ct=0,
(I1.9) dod = —2K@' N\ 6' — (br + en)f* N.6°,

where K is a constant. From the second Bianchi identity, d2} = 3 wi N 2%
k
— QLA o, we get

(I1.10) 20K 4 e(br + et) =0,
2¢K — b(br + et) = 0.
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Consider each of four cases separately.

(i) b#0,e+0;

(ii) b+#0,e=0;

(iii) b=0,e=0;

iv) b=0,e=0.

(i) If a+# 0, set p = o) — b6 — ef’. Then du = 0. Since p % 0, the
equation p = O therefore defines a four-dimensional ideal of g, which in turn
defines a four-dimensional normal subgroup H of G. H also acts transitively
on M, because H N H is discrete. Since dim H = 4 and M is simply connected,
H acts simply transitively on M.

If a=0, put g = e? — K&*. Then dy = 0 and p = 0. As above the
subgroup of G defined by ¢ = 0 acts simply transitively on M.

(ii) Ifc# Oputp= ) — bf, and if ¢ = 0 put 4 = b} — Kf§*. Then,
in either case, du = 0, ¢ = 0, and g = O defines a subgroup of G, which
acts simply transitively on M.

(iii) Same as (ii).

(iv) By virture of equation (11.9), do! = —2K#° A ¢" in this case. If a = 0
or ¢ # 0, then K = 0 by (11.10). Thus de? = 0, «} = 0, and again «? = 0
defines a subgroup of G, which acts simply transitively on M.

If a = ¢ = 0, then we have

(L11)  df° = —ad A 6, df* = —wb A 6°, Q0 = do? = —2KO° A 0",
(I1.12) dff= — 1@ AN, dP = — 1 NG, B= —(E + PP NP,

and all other £% = 0. Hence M = M, x M,, where M, and M, are two-
dimensional spaces with structure equations given by (I1l.11) and (I11.12),
respectively. Since K is arbitrary, M, is C(+,2), C(—,2) or C(0,2). But
£ + r* > 0 implies that M, can be C(0,2) or C(—, 2).

Case VIII. f,h = {0}. G acts simply transitively on M.

We summarize the results of this chapter in the following theorem. A
Riemannian space which has a group of isometries acting simply transitively
on it is called a group manifold.

Theorem. Let M be a four-dimensional, simply connected homogeneous
Riemannian manifold. Then M must be one of the following spaces. C(0, 4),

C(+’4)’ C('—34)5 P(29 C), H(zy C)’ Rl X C(+)3); Rl X C(_,3)a C((i), 2)

X C((i), 2), or a group manifold. In this list the first five spaces are Einstein
spaces, the sixth and seventh spaces are not Einstein spaces, and the last space
is an Einstein space if and only if both factors have the same sectional
curvature.

In Chapter III we shall determine which group manifolds are Einstein
spaces.
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Remark. Suppose that M has a group G, of isometries which acts simply
transitively on M. Fix p,e M, and define F: G — M by F(g) = g(p,). Then F
is a diffeomorphism of G onto M. Let {, > denote the metric tensor on M.
Then F*{, > is a metric tensor induced on G, and F is an isometry with
respect to these metrics. The important fact is that F*{, > is a left-invariant
metric on G. In fact, let [, denote left multiplication by g in G. Then Fol,
= goF implies the third equality in the chain:

F*<X’ Y>g = <F* X, F* Y>0(Po) = <(g—l OF)* X, (g_loF)* Y>po
= <(Folg_,),'< X, (Fol,_ ), Y>, = F*A, o X 1,0 YD,

where X, Y € T ,(G).

Chapter 111

By virtue of the theorem at the end of Chapter II, the problem of
determining all simply connected homogeneous four-dimensional Einstein
spaces M, is solved up to the case when M is a group manifold. Due to the
remark at the end of Chapter 11, we may regard a group manifold M as a Lie
group G with a left-invariant Riemannian metric. Indeed, due to the results
of Chapter I, we need only consider solvable groups G.

In this chapter we shall determine all such G which are Einstein spaces.
This chapter is divided into two sections. The first section contains the detailed
determination of all solvable group manifolds which are Einstein spaces, and
the second a summary of the main results obtained in this chapter.

1. In this chapter G is a four-dimensional solvable Lie group, g is its Lie
algebra and ¢, > is an inner product on g. This inner product defines a left-
invariant metric on G. Let w and 2 be the Riemannian connection and
curvature forms, respectively, defined on G and taking values in so(4). As
with all left-invariant linear froms on G, we regard w and 2 as linear forms
on g. Let X, - -+, X, be an orthonormal basis of g, and let 4, = w(X,) € s0(4),
1 < k< 4. Write A, = (A4%,), with 4%, + 4], = 0. Let C;, be the structure

4
constants of g with respect to X, ---, X,, i.e., [X;, X,] = } Ci.X,. Then
4 1=1
do(X,, X)) = _% ST C4A,, since o and the X, are left-invariant.
k=1
Furthermore,

0 A olX,, X)) = —;—(A,,AL — A4, = %[Ak,A,] ,
where the last expression is the bracket in so(4). Thus

20X X) = daX X)) + 0 A 0oXe X) = 2 (A0 4] = T Ciu)
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(II1.1) Let Rz, = 282, (X,, X,) be the curvature tensor.
The Ricci tensor is defined by
(HI-Z) le = Z RijiL - Z [Ai’Al]ij + Z (Aici)jL s

where C* = (C5,) is a 4 X 4 skew symmetric matrix.
The scalar curvature is

(I11.3) R=Y[4,A4,]; + 5 Trace (4,CY) .
i, 1
The {4} and {C%,} are related, in fact, each set is determined by the other.
For, let ¢, . . -, §* be the forms dualto X, - - -, X,. Then df* = 3, — wi A 6.
k
But df‘ — —-;-C},ﬂf A and of = AL Ths —%c;kef/\ek -

- %(Ai.j — Ai)6 A ¢%, which implies that C%, = A4}; — 4},. Conversely,
k

permuting the indices cyclically and adding we get Ci, — C¥;, 4+ Ci, = —247,.

The method of this chapter is a direct one. The Lie algebra g is determined
by specifying the structure constants {C%,} with respect to some basis {X,}. At
the same time the inner product on g is specified by taking {X,} to be
orthonormal. The {C%,} are determined by the {4%.}. In order for g to be a
Lie Algebra the Jacobi identities must be satisfied by the C%,; and in order
for the metric to be Einsteinian the Ricci tensor must satisfy the equations
R;; = Rj;;/4. The method of this chapter is to take the {4},} as unknowns,
to set up the Jacobi and Einstein equations and to find all possible solutions
for the A4%,.

Let g be a four-dimensional vector space. Our problem now is to determine
all possible ways of making g into a solvable Lie algebra with an inner product,
such that the Riemannian structure determined by this inner product is
Einsteinian. For any Lie algebra structure on g we define ¢’ = [g,gl, g7 =
[¢’, g'], etc. With any solvable Lie algebra structure and inner product on g it
is possible to choose an orthonormal basis on g in one of the following seven
ways. Bases chosen in the way of type n) below will be called admissible for
any g of that type forn =1,...,7.

1) Ifdimg = 3,dimg”’ =2, dimg” =1, then X,eg”’, X,eg”, X,eq

and X, |_g'.

2) If dimg' =3, dimg” =2, ¢ =0, then X;,X,eg”, X,eq’ and

X 14q.

3) Ifdimg = 3,dimg” =1, then X,eg”, X,, X,eq’, X, | ¢

4) Ifdimg =3,9”" =0, then X, X,, X,eq’, X, | ¢

5) Ifdimg = 2,dimg” =1, then X,eg”, X;e¢, X, X, | g

6) Ifdimg =2,q9” =0, then X,, X;eq, X, X, | ¢
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(0 @i+ae op — b —be — pu )
0 —
(4, 4,] = e ou ,
1 3 0 ‘oe_ax
L 0 J
0 a8 + we wp — ¢8 —Ce —ap')
[AxaA4] = 0 py —&s 5S—X[l N
0 xe — dy
L o
fO —bp — ¢y ap + of ay — ¢f
2
[, 4,] = 0 Prd-ap be—pf—ar
0 pc — ba
L 0
K¢ —by — ¢y ay + of — cs ay + bs — of
[A29A4]: 0 Cb+_}‘f—a€ Cz—xf'—a(l) ,
0 g¢ — bo
L 0
(0 op+ oy —¢r—oy by —as—cp by + os—cy
[A, A,] = 0 co — ba — ys antps——bw
0 o'+’ — pw— py
L 0
1.2, R,,=2(bd + ce) —a® — b* — ¢*,
Ry = 2op — bo) — b — ¢ — &,
Ry = —2(ce + gp) — ¢ — d* — o,
Ry = 2¢f — ap + b* — p* — 1%,
Ry, = —2yf —aw + & — ¥ — ¥,
Ryy ="+ — o — py — &,
Ry =@ —b) + ale —c) —alb +d) + cp,
Ry,=cu—a@@+ b) + ¢(@ — b) — alc — ¢),
R,,=0d0 + wle —c)—alc +¢) — by + o),
Ry, = ""b/l —ale+¢)—ob—8) —olc—2e),
R, = —2bp — 2¢y + f,
Ry, = —ef — pb — 8) — y(c — ¢),
Ry = —bQ2y + ) — 2¢cy,
Ry, = of — X(b —38) —yc—29,
R1234 = 0'(.0 -y + X((U — SD) —Ccs,

’
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R,,= —fa—s(c—2o,

Ry, =awlpg—0) — ol +0) —blc +¢) —cd,
Ry;= —be —olu+0) —clb +3) — wlo—p),
Ry = 0la — ) + o2f — 1),

Ry = —pp + yQ2u — a),

Ry =ay+of —cs—ay—o(x + D,
Ryn= —pp— 29— Yo —p,

Ry, = by — cp — 205,

Ry = pe — 0y — f(b + &) — s(e — p),

up = ay — ¢of —ap — oy — 1,

w = py — &8 — yo — plg + 0) ,

s = Y@ — @) — o(y + 2f) + bs,
=685 —yo — yQ2u + a0 ,

= by — oy + s(p — @),

s = Y& — 0y — Sw — flc + &),

wy =Cb —ac +y(f—p) —olx + 9,
wm = be —ac —p(y + N+ ¥y -0,
w = Cp — ba — 2ys .

r
=
-
=

3423:C59_b‘7—s(X"“f)7
2434=C0—bw+5(p—y),

- I I I R - I - R~ B~ B~ B~

3424:C0——bw—sy.

1.3. Einstein equations: R;; = R §;,/4.

1) R,= —(a+2b" 4+ 2"+ 2¢" + ¢’ + oY),

2) Ry, =2b5 + ce) — alp + o) — a® — p* — 27 — y*,

3) Ry=2op—bd+ 1) —py—¢la+ o) —¢ —p =5,
4) Ry= —2cc+op+yf) —py—ol@a+ o) —o* —y —s,
5) R,=pla— ¢ + ya— o) — 20y + bs,

6) R,=b2p+y +clxy—0 +slp—w),

7 R,=blx+ N+ cy + p) + 205,

8 Ry=¢@B6—b)+oe—alb+3d + cy— bo+ s(o—),
9D Ry=00+wle—c)—alc+e —bp—cp+ 2,

10) Ry=owlpg—0a)—px+HN+yf—0) —olg+0) —cd — be —ao .
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14 R=—((a+ o +2 + (o + ' + @+ o) + (p + o)

+ 2" 4+ 26" + 2 + pF + 25 + D) .

1.5. Bianchi identities:

11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)

II. We now find all possibe solutions up to isomorphic Lie algebras with
isometric Riemannian structures. Each solution is described in detail as it
arises. The results will be summarized in a theorem at the end of the chapter.
In the rest of this chapter equations numbered 1) through 21) refer to the

O=@F—p+e—pb+d,
O=@G+Hb+d+yc+eo,
0=0lp—y) + 2w — @ + af — se,
0=ap + 20f — 2yp,

O=ay+ flo—¢) —cs + plp— ),
O0=@G+Nb+08) —sle+ p) —plc+e,
O0=ay — flo — ) + plo — ) + ¢,
0=ay+ s(b — 8 — 20f + 2y,
0=y +0) +¢s+ (f—pl+e,
O=s(x + 9,

0=ps.

numbered equations in the above steps 1.3 and 1.5.
II.1. R = 0. From the above equation 1.4, we get

The Einstein equations all become identities, 0 = 0, and the Bianchi equations

aa%b,y,w’C,U,x,p,S'—— 0.

become (listing only non-identities)

11)
12)

0:f6, 16) Ozfay
0=1fs, 19) O0=fe.

These equations have two sets of solutions:
a) f =0, ¢ and § arbitrary,

b)

e = 0 = 0, f arbitrary.

In either case there are no conditions on p, so p is arbitrary.
In case a) the bracket operations become

(I11.4)

[X,, X,] = —0X, — X, , [X,,X;]1=0,
[XI,X3]=5XZ—/1X4, [X27X4]:07
[XI,X4]:6X2 +/1X3, [X37X4]:0-
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In case b) they become

[Xan] =0 ’ [Xza Xs] = —“le. s
(IIL.5) [XnXs] = "’#Xi. ’ [XZ’XJ = sz s
[X,X]=pX,, [X,X]=0.

We observe that the solutions of type (III.4) can be transformed into
solutions of type (III.5) by an admissible change of basis. To see this, consider
Ad(X)) restricted to span (X,, X,, X,) for arbitrarily given ¢,5 and g. The
matrix of Ad(X,) with respect to X,, X,, X, is

0 ) 3

—d 0 zl -
—s —pu 0

Consider the standard inner product (A4, B) = —Trace AB on so(3). Then

the adjoint representation of SO(3) has SO(3) acting on so(3) as orthogonal

transformations with respect to this inner product, and SO(3) acts transitively
on the unit sphere in so(3). Hence there exists an 4 € SO(3) such that

0 d e 0 0 0
Al —¢ 0 y}A”:v&Z%—ez%—‘uz 0 0 1.

—& —pu 0 0 —1 0
Thus the desired change of basis is given by A. If X,, ..., X, are now the
new admissible basis, then
[X],Xz]:()’ [szXS]:Ov
(1116) [X“X:;] = —tX4 s [Xzy X4] =0 )
[X], X4] = th ’ [Xsa X4] =0 5

where t = +/6° + ¢ + 4. This is a solution of type (I11.5) with 4 = ¢, f = 0.

In a solution of type (IIL.5), let x# + f2 > O be given. Let X = (¢ +
PV X, + 1X), Y = (@ + VX, — pX,), where X, ..., X, are an
admissible basis for this solution. Then X,Y, X,, X, are also an admissible
basis for the same solution, but with respect to this basis the bracket operations
are the same as (II1.6) with + = 4y + f&. Thus we need consider only
solutions of type (1I1.6).

Let X,,---, X, be an admissible basis for the Lie algebra g defined by
(IIL.6) with ¢+ = 1. For any ¢ > 0 equations (II11.6) are satisfied by tX,,
X,, X,, X,. Hence equations (I11.6) define a 1-parameter family of inner
products on a single Lie algebra g.

Proposition 1. The left-invariant Riemannian metric defined by any of
these inner products is flat.
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the orthogonal complement of X, in g’. Ad (X)¥ must have dimension 2 since

dimg’ = 3. Thus ¥ N Ad(X))V # 0 and we may pick X,eV such that

Ad (X)X, eV, which makes b + § = 0. X, is now determined up to sign.
We now have

[XI’XZ] = aX,, [Xz’Xz] =0,
(I11.11) (X, X,) = oX, + (6 — X, , (X, X,]=0,
[X,, X,] =2cX, + (2 + OX, + oX,, [X,X]1=0.

The Bianchi equations are all satisfied.

Claim. ¢ =0.

Proof. Suppose ¢ = 0. Then g = —0, ¢ = —2a by 8) and 9). lf ¢ £ O,
then a = —20 by 10) and R/4 = 2¢* + 60° by 2), which is impossible since
R < 0. Thusg¢ = 0. From 1) + 4) — 2) — 3),

(111.12) ¢ =3a"+ R/4.

Putting this into 1) gives &* = —3R/4 — 114*. Putting these into 4) gives
0 = a(Sa + w). But a # 0, since dim g’ = 3 (look at equations (111.11)). Thus
® = —S5a. Putting this back into 1) gives —R/2 = 24a4*. Consequently, from
(111.12) we get ¢* = 3R/16 < 0, which is impossible. Hence ¢ = 0.

Now 0 = plw — @) — o{w + ¢ + a) by 10); and 4) — 3) gives 0 = 4oy
+ (w — ¢)a + o + ¢). Multiply through by ¢ and use 10) above to get
0 = ude® + (0 — @Y.

Suppose ¢ %= 0. Then ¢ = 0, w = ¢, and 0 = a(a — ¢) by 1) — 3). Thus
a = ¢ since a #+ 0. Hence a* = —R/12 by 1), and all 21 equations are now
satisfied.

Suppose 4 = 0. Then 0 = 6(w + ¢ + @) by 10). If w + ¢ + a = 0, then
R = 0 by 2), which is not the case. Thus ¢ =0, and w = ¢ by 4) — 3). Hence
we get the same solution as above, except with ¢ = 0.

The solutions we have obtained in this case are: Set R = —12; then a* =1,
¢ = w = a, p arbitrary; p, x, f, ¥, 8, ¢, ¢, b, §, ¢ = 0. The bracket operations
are

[Xan] - aX;z ) [XzaXs] =0 )
(I11.13) [X,, X;] = aX, — pX,, [X,,X,0=0,
(X, X]=pX,+aX,, [X;,;X]1=0.

Propesition 4. For any value of u and any choice of a = +1, the space
defined by equations (111. 13) is a space of constant negative curvature equal
to —1. Thus as Riemannian manifolds each of these solutions is isometric to
real hyperbolic space.

Proof. Directly compute the R;;;, from pages 332 and 333.
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The question remains as to which of the above solutions are non-isomorphic
Lie algebras. Let X, .-, X, be a given basis with structure constants a and
p as in (II1.13). Then the orthogonal change of basis to —X,, X,, X,, X,
changes a to —a and leaves p the same, while the orthogonal change of basis
to X,, X,, X,, X, leaves a the same but changes x to —p. Hence, in order to
determine non-isomorphic solutions, it suffices to take a = 1 and ¢ > O.

Let g(p) be the Lie algebra defined by equations (III.13) for each value of
p= 0.

Proposition 5. g(p) is isomorphic to g(d) if and only if p = 8.

Proof. Let X be any element of g() not contained in g(u)’, and regard
Ad(X) as a linear transformation of g(u)’ — g(u)’. As in the proof of
Proposition 3 the eigenvalues of Ad (X) are a, and a,(1 & ip), where |a,] is
the length of the component of X normal to g(x)’. In the same way, if Y e g(d),
but Y ¢g(8), and |b,| = length of the component of ¥ normal to g(§)’, then
the eigenvalues of Ad (Y): g(6)’ — g(8)’ are b, and b,(1 + id).

Suppose there exist such X and Y with equal eigenvalues, as there must if
g() = g(8). Then necessarily a, = b, and consequently x4 = §.

A matrix representation of g(x) is given by

— - ~— -

0O 0 0 0 O —~-1 1
0 0 . 0 O O 0
X,=[{0 - 0 0 0]}, X, = 0o 0},
0 0 0 0 1 1 0 O O
(0 0 0 1 0] (1 0 o0 i
B 0 07 0 0
O -1 1 O 0
X, = 0 o], X, = —1 1
0 1 0© 0 0 1
0 1 0 © ] (0 0 1 ©

Note that this representation represents g(y) as a subalgebra of so(4,1).
A simpler matrix representation of g(0), good for any dimension n, is given
by the set of all n X n real matrices which have all rows but the first equal to

0. The orthonormal basis X, - - -, X, is defined to be
By oo Bun
0..-0
Xiz . . s i:1,"',n,
0-.-0

and the corresponding group is
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XI Xn
01 0...0
1 0 Xl"";Xn€R7Xl>O
1
Case B. dimg = 2.
In this case, with respect to an admissible basis,a = 0,d = —b, e = —c.
[Xl; Xz] = 2bX3 + 2CX4 s [Xz,Xa] = pX3 + (X - f)X4 5

dIL.14) [X,, X)] = X, + (6 — wX,, [Xp,X]= Q@+ HX, +yX,,
(X, X]= (¢ + X, + 0X,, [X,X]=sX,. -

Claim. s = 0.

Proof. Supposes # 0. Then p = O by 21), x + f = 0 by 20), ¢ = O by
19, u + ¢ = 0by 16), and b — §=0 by 18). But th1s means that dim g’
< 1 (look at equations (II1.14)). Hence s = 0.

Now ¢’ is abelian, and X, and X, are determined only up to a rotation.
Pick X, to be a multiple of [X,, X;]; then b = 0.

Claim. ¢ = 0.

Proof. Suppose ¢ # 0. Theny — f=0by6), 2y + p=0by 7, g — ¢
=0by &), and 2w + ¢ = 0 by 9). Thus 10) and 13) become

10) yx + we =0,

13) wy — yo =0,
which have a non-trivial solution in y and ¢ if and only if w? + y: = 0.

Suppose @* + y* =0, i.e., w =y =0.Thenp = ¢ = 0by 7) and 9), and
R/4 = 2(¢* + ¥» by 3), which is impossible since R < 0. Suppose o® + »*
> 0. Then y = 0 = ¢. Thus y* = »? by 1) and 2), and y* = —R/16 by 3).
But then 16¢* = R/2 by 2), which is impossible. Hence ¢ = 0.

The bracket operations now look as follows:

[X,, X,] = 0, [X,, XJ] = oX; + (x — DX,,
[X,, X, = X, + (¢ — #)X4 , X, X]= G+ HX, +yX,,
’[X15X4]:(#+0')X3+(1)X4, [X.‘!’Xd] :'O_

Regard 4d(X)) and Ad(X,) as linear transformations of o° — g’. Then the
matrix of each with respect to the basis X, X, is:

Ad(Xl)z[af# ":F], Ad(Xz):[xff l;ff].

Let ¥V = span (X, X,). It is possible to choose an orthonormal basis of V' so
that ¢ + ¢ = 0. To see this, suppose ¢ + ¢ % 0, and let
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F+20
(¢ + o)

F() = cost + sin ¢,

Then there exists a ¢, 0 < t, < «, such that F(t) = 0. Let ¥ = X, cos¢, +
X, sin ¢t,. Then

Ad(Y) = cos t, Ad(X,) + sint, Ad(X,)
:[* (a—{-p)costa—{-(x—{-f)sinta]:[* O].

* * * *

Label a new basis X, = Y and X, eV, | Y, unit length. Then [X,, X,] = O,
and ‘

=g, O] awo-[ 2 1)

e, y = —a.

Nolév 0=o0(y + ) by 14). We must now consider two cases, namely,
r+f=0and yx + f+0.

Casel. x+ f=0.

Choose 1, 0 < t < 7, such that g cost + ysin?z = 0. Let Y, = X, cost +
X,sint, Y, = —X,sint + X,cost. Then

Ad(Y) = cost Ad(X)) + sint Ad(X) = |* % aary =[* 9.
* *

*

Thus we may assume that ¢ = 0.

Claim. y = 0.

Proof. Suppose y 3 0. Then y = 0 by 10), and w = ¢ by 13). Thus ¢ #
0 by 1), and p = 0 by 5). But then ¢ = 0 by 2) and 3), a contradiction.
Hence y = 0.

Only equations 1) through 5) remain to be solved. Combing 1), 2), 3) and
4) we get 0 = py + ow. Equations 1) though 5) are then equivalent to:

1) —R/4=¢"+o" 4 —R/d=0o"+,

3) —R/A=¢ +p4, 6 0=py+ go.
Set R = —4. Then (p,p), (®,¥), (p,¥) and (¢, w) are unit vectors, with
(p,0) | (0,y) and (p,y) | (¢, ®). Therefore, all possible solutions are given
by:

o =1C¢cost, w=sint, = Fsint, y= +cost, for 0<¢<2r,

and with the signs related; and a, b,4,c,¢,0,p,%,f, 5 = 0.
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(X, X,]1=0, [X,, X,] = —(£)X,sin¢,
(I11.15) [X,X,]= X,cost, [X, X]=+ X,cost,
X, X])= X,sint, [X;,X]=0.

Consider the solution for t = 0, and let ¢, 0 < ¢t < 2 7, be given. Let Y,
= X,cost 4+ X,sintand Y, = —(+) X,sin¢ + (&) X, cos ¢t. Then

[YU YZ] =0 5 [Yz, X3] = _(i)X::, sint,
[Y,,X,] = X,cost, [Y,X]=(+)X,cost,
[Y1’X4] = X4 sin ¢ ’ [Xaa X4] =0.

Hence, by an orthonormal change of basis, we obtain the solution for ¢. Thus
we have only one solution, which we take to be for + = 0, and the ¢+’
sign. The bracket operations are then:

X,X,]=0, [X,X,]1=0,
(I11.16) X,X]l=X,, [X,X]l=X,,
[XI’X4] =0 s [Xg, X;,] =0.

Let 2, = span (X,, X,), and @, = span(X,, X,). Then 2, and @, are
clearly ideals in g and ¢ = 2, ® 2,. Examining the curvature tensor R, it
is seen that the Riemannian metric is the product of the induced metrics on
2, and 2, and the induced metrics on @,, i = 1,2, are of constant curvature
equal to — 1.

This completes Case 1, where we assumed that y + f = 0. We must now
consider Case 2. However, we shall not get any new solutions.

Case2. y +f#0.

Now ¢ = 0 by 14). Thus Ad(X),) is already diagonal. w = ¢ by 13) and 15)
and the assumption that y + f % 0. Thus ¢* = —R/8 by 1). In particular,
¢ # 0. Thus p + y = 0 by 5).

Now 0 = yf by 10), and 0 = yf by 4). But y* + y» = —R/8 by 2), and
so y and y cannot both be zero. Consequently, f = 0. Thus y == 0, since
x+1+#0.

Set R = —8. Then ¢* =1 by 1), and »* + »* = 1 by 2). Hence in this
case we have found all possible solutions which can be listed as follows:
R=-8,¢=1Lo'=l,oa=9¢, y=cost,y=sint,0<t<2r,p= —y,
a,b,c,8,¢f,0,p,5=0.

The bracket operations are:

[X,,X,]=0, [X,, X,] = —X,sint + X,cos¢,
(111.17) [X,X;] = (+)X,, [X,,X]=X,cost+ X,sint,
[X19X4] - (i)X4 3 [X37 X4] =0. (Slgns are related.)
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Claim. These solutions are all the same as the solution given by equations
(II1.15) given on page 346. That is, by making an appropriate orthogonal
change of basis in any of the solutions defined by (II1.17), we will get the
same ‘solution defined by (I11.16).

Proof. We show first that all solutions at (III.17) are the same as the one
at (II1.17) for t = z/2 and the *“+°’ sign, and then that this solution is the
same as the one at (I11.15) for t = /4 and the ¢“— "’ sign, except for a scale
change which comes from our choice of R = —4 at (I11.15) and R = —8 at
(I11.17).

Let X, .-+, X, be an admissible basis for the solution at (1I1.17) for
t=rz/2and the ““4 " sign. Let Y, =(+)X,,Y,=X,, Y, = X, cos B+ X, sin §,
Y, = —X,sin 8 + X, cos 3, where 3 is to be determined. Then

[Yls Yz] =0 s [Yza Y:;] - ‘_Ya cos 2(3 + Y4 sin Zﬁ s
(IL.18)  [Y,, Y] = (+)Y,, [Y,Y]=Y,sin28 + Y,cos28,
[Y1> Y4] = (i)Y4 5 [Y3> Y4] =0.

Given 1,0 < t < 2z, choose B so that cos 28 = sin ¢ and sin 28 = cos 1.
In fact, take 23 = =/2 — t. Equations (II11.18) now show that the solution at
(I11.17) for t = #/2 and the * +*’ sign is the same as any solution at (I11.17).
It is obvious that this solution is the same as the one at (111.15) for ¢ = =/4
and the ¢“—"’ sign. -

Case C. dimg = 1.

In this case, with respect to an admissible basis, a, b, 8, ¢, ¢ + ¢, ¢ + o,
o, % + f = 0. Thus:

[X,, X,] = 2¢X,, [X, X,]=2¢X,,
[XU X:}] == 20X4 ’ [X2’ XA] - yX4 b
[Xn X4] = CDX4 , [X3,X4] = SX4 .

There are no solutions in this case.

Equations 7) and 8) are linear in y and ¢, and in ¢ and s: 7) 0 = ¢y + so,
8) 0 = sy + 2co. Consider the two cases: i) 2¢2 — s = 0 and ii) 2¢* — s? = 0.

i) 2c¢® — s* = 0. Suppose also that 2¢*> — y* = 0. Then 0 = * — 2y? by
1) and 2). But — R/4 = o* — 2y¢* by 4). Thus 2¢* — »* = 0. But then y =
o =0by5)and 6), and s = ¢ = 0by 7) and 8). Thus 0 = 2¢° — y* by 1)
and 2), a contradiction. Hence i) is impossible.

ii) 2¢— s+ 0. Then y =0 =0by 7) and 8), and y = » = O by 6)
and 9). Thus 2¢ — s = 0 by 1) and 3), a contradiction. Hence there are no
solutions when dim g’ = 1.

2. The following theorem summarizes the results obtained in § 1. A ma-
trix representation for each Lie algebra is given in § 1 and in the introduction,
and so is not repeated here.
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Theorem. Let G be a four-dimensional Lie group with a left-invariant
Riemannian metric. Then G is an Einstein space if and only if its Lie algebra
g is one of the following solvable Lie algebras with the inner product defined,
up to change in scale, by X,, - .-, X, being an orthonormal basis. Distinct
values of t define non-isomorphic Lie algebras.

1. [X1aXz]:Oa [XzaXs]:Oy

[XUXJ] :X4: [X2>X4]:Os
[X1,X4] = —Xs; [X3>X4] =0.

As a Riemannian space this is flat.

2. X,X,]l=X,—1X,, [X,X])=2X,,
[X,X,]=1X,+ X,, [X,,X]=0,
[X, X,] =2X,, [X,, X,]=0, 0<t< .
As a Riemannian space each of these is a hermitian hyperbolic space with
sectional curvature K satisfying — 1 > K > —4.
3' [XI’XZ]:XZ’ [XQaX:;]:O:
[Xl’Xs]:XJ_tX4’ [Xz,XJ :0,
X, X]=tX,+ X,, [X;,.X]=0, 0<1< .
As a Riemannian space each of these is a real hyperbolic space with constant
curvature K equal to — 1.
4. [X,X,]=0, [X,, X,] =0,
[XUXJ] :XS, [XzyX.1] :X4’
X, X]=0, [X,X]=0.
This Lie algebra is the direct sum of a two-dimensional Lie algebra with itself,

and the Riemannian space is the direct product of a two-dimensional solvable
group manifold, of constant curvature K equal to — 1, with itself.
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